iJam: Jamming Oneself for Secure Wireless Communication

نویسندگان

  • Shyamnath Gollakota
  • Dina Katabi
چکیده

Wireless is inherently less secure than wired networks because of its broadcast nature. Attacks that simply snoop on the wireless medium successfully defeat the security of even 802.11 networks using the most recent security standards (WPA2-PSK). In this paper we ask the following question: Can we prevent this kind of eavesdropping from happening? If so, we can potentially defeat the entire class of attacks that rely on snooping. This paper presents iJam, a PHY-layer protocol for OFDM-based wireless systems. iJam ensures that an eavesdropper cannot successfully demodulate a wireless signal not intended for it. To achieve this iJam strategically introduces interference that prevents an eavesdropper from decoding the data, while allowing the intended receiver to decode it. iJam exploits the properties of 802.11’s OFDM signals to ensure that an eavesdropper cannot even tell which parts of the signal are jammed. We implement iJam and evaluate it in a testbed of GNURadios with an 802.11-like physical layer. We show that iJam makes the data bits at the adversary look random, i.e., the BER becomes close to 50%, whereas the receiver can perfectly decode the data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Virtual Wiretap Channel for Secure Message Transmission

In the Wyner wiretap channel a sender is connected to a receiver and an eavesdropper through two noisy channels. It has been shown that if the noise in the eavesdropper channel is higher than the receiver’s channel, information theoretically secure communication from Alice to Bob, without requiring a shared key, is possible. The approach is particularly attractive noting the rise of quantum com...

متن کامل

A Secure Routing Algorithm for Underwater Wireless Sensor Networks

Recently, underwater Wireless Sensor Networks (UWSNs) attracted the interest of many researchers and the past three decades have held the rapid progress of underwater acoustic communication. One of the major problems in UWSNs is how to transfer data from the mobile node to the base stations and choosing the optimized route for data transmission. Secure routing in UWSNs is necessary for packet d...

متن کامل

Two-hop Secure Communication Using an Untrusted Relay

We consider a source-destination pair that can only communicate through an untrusted intermediate relay node. The intermediate node is willing to employ a designated relaying scheme to facilitate reliable communication between the source and the destination. Yet, the information it relays needs to be kept secret from it. In this two-hop communication scenario, where the use of the untrusted rel...

متن کامل

Develop a scanning algorithm for the detection of selfish nodes in cognitive radio networks

Cognitive radio is a wireless based communication technology which has intelligence built into it. Secure communication is a key for any wireless network . Like all other networks, cognitive radios are susceptible to various kinds of attacks like DOS attack , PUE attack , tunnel attack and jamming attack . While performing these attacks nodes in the network becomes selfish and start maximizing ...

متن کامل

Secure Communication in Shotgun Cellular Systems

In this paper, we analyze the secure connectivity in Shotgun cellular systems (SCS: Wireless communication systems with randomly placed base stations) by Poisson intrinsically secure communication graph (IS-graph), i.e., a random graph which describes the connections that are secure over a network. For a base-station in SCS, a degree of secure connections is determined over two channel models: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010